
QSPL REFERENCE MANUAL

L. P. Deutsch
B. W. Lampson

University of California, Berkeley

Document No. R-28

Issued June 12, 1967
Revised March 1, 1968

Contract S D - l E

Office of Secretary of Defense
Advanced Research Projects Agency

Washington, D . C. 20325

1

-.
Everythin$ described i n t h i s manual was implemented on
March LO, 1968.

. Page 1

I -.

~ .*

I

(I '\

This document is a brief but complete description of a

This new languqge invented and implemented by the authors.
language %s intended t o be a suitable vehicle for programs
which woulld otherwise be written in machine language for reasons
of efficiency or f lex ib i l i ty .
a l so includes a compiler capable of producing reasonably
e f f ic ien t object code and a runtime which implements the input-
output and string-handling features of the language a s well as
a f a i r l y elaborate storage allocator.
takes care of paging arrays and blocks from the drum i f they
have been so declared.

It is par t of a system which

The system automatically

The Zangua$e:

A QSfi program consists of statements separated by semi-
colons.
language e%cept tha t they:

Chrriage returns and blanks have no significance i n the

A k t as word (and coment) delimiters.
AS.e taken l i t e r a l l y in s t r ing and character constants.

1.
2.

Warning:
can cause trouble fo r the unwary programmer.
possible t d p write two statements withoq$t the separating semi-
colon and *ind up with something which i s legal, but not a t
a l l what w$s intended.
t ha t it islverg permissive; many things are lega l which are not
a t a l l rea$onable.

This is one of the many features of the language which
It i s quite

It is a general characterist ic of QSPL

A statement may be:
1. A declaration.
2. A l i s t i n g control statement.
3. An end statement.
4. A function definit ion,

5. A comment, which i s a l i ne beginning (after a

semi-colon or another comment) with an * and
ending w i t h a carriage return (not ;).

6. A FOR statement.
'#. An IF' statement.

8. ~n expression.

Most statements are expressions, so we w i l l discuss them first.
,

I P ____

Page 2

c.. ExprearsioQs

An expression is made up of operands
Parentheshs are allowed t o any reasonable

separated by operators.
depth. The operators

are a r r a n e d i n a hierarchy of binding strength or precedence.
Those a t $he top of the following list are executed latest, so
t ha t a+bV is a+(b*c),
&

WHERE

FOR

IF

c

OR

ddnotes successive evaluation.
i d value of the last expression i n the string.
a+b & c+d; or more plausibly f(a,b) & g(1,y); which causes
bdth functions t o be called i n the order i n which they
arie written.
is similar t o &, but causes the following expression t o
be evaluated first. It may not be iterated. Thus

takes the form <expression> FOR <for c l a u s e . The
eldpression is evaluated repeatedly under control of the
for clause (see below for the syntax of th i s construct).
The f i n a l value of the expression is discarded, and the
vallue of an expression involving FOR is undefined.
& b s e , som thing l ike

t*es the form <expression> IF <expressiol?> ELSE <expressiol?>
Thk second expression i s evaluated.
thp first expression i s evaluated.
v a b e of the whole thing, and the th i rd expression (which,
by the way, may contain another IF), i s skipped. Otherwise
the first expression i s skipped, and the third is evaluated.
Thbs x& IF y=16 ELSE x+ IF y5=0 ELSE x+6. If the f i n a l
EL& is omitted, 0 w i l l be supplied.
is (the assignment operator. It ranks on the same leve l
as'for i ts left-hand operand, and ju s t below IF for i t s
right-hand one. The right-hand operand i s evaluated, and
it$ value becomes the value of the left-hand one. The
whQle expression i s then treated as though only the l e f t -
hahd side had been written.
i s the logical or .
an expression containing logical operators connecting at
lethst one relation), then the resu l t i s 0 or 1 depending
on whether both operands are t rue (non-zero) .
operands have ordinary values, these values are combined
w i t h the machine's MRG instruction. Thus a<& OR is
t rve if e i ther re la t ion holds; a<4 OR x+l i s t rue i f a
<4 or i f x+1 i s not zero.
operand i s not evaluated i f the first one 3.8 t rue. But
f (x, y) OR z is the 24-bit logical or of z and the value
of the function ca l l . The operands of an OR are never
reiordexed.

The value of the r e su l t
Thus

f(X,Y) WfEERE y+14;

)

'(O f

A[I,J] \O FOR I = 1 TO N FOR J = 1 TO M is legal , c

If it i s non-zero,
Its value becomes the

1 .I1

If e i ther operand i s a re la t ion (or

If both

In both these cases, the second

AMD
EOR

i s the logical and.
%he way it treats i t s operands, differ ing only i n the
zh?sult.
t3nd uses the EOR instruction.

t isee discussion of OR) i t s value is inverted (0 becomes 1,
1 becomes 0).

It i s exactly the same as OR i n

EOR always converts i t s operands t o values

s the logical not. If i ts single operand is a re la t ion

Otherwise, a 24-bit complement is taken
(with EOR = -1).

=I # < <:a > 3= are the relations. Each one evaluates i t s operands

MOD

+ -
* /
LSH
RSH
I C Y
RCY

+ -
GOTO
RETURN
Do

(1,

and then performs the indicated t e s t .
$he arithmetic operations, the operands may be re-ordered
i f it s u i t s the compiler's convenience.
a MOD b is the remainder of a/b
perform 24-bit integer addition o r subtraction.

pRrfom 24-bit integer multiplication and division.
t e s t is made for overflow on division.
sh i f t the first operand the number of places indicated by
the second operand.
The cycle operators do an end-around shif t .

(unary operators) The unary + and - do the obvious thing.
Db is a noise word and i s ignored.
for constructions such as this:
t 0 the address which i s the value of i t s operand (see the
d$scussion of labels below).
It leaves the value i n A and returns through the return
lgnk of the most recently defined function (see below).
It t h i s i s not desired, the RETURN may be modified by
fbllowing it with FROM <expression>. In t h i s case the
r$turn i s t o the address which is l+the value of the
eltpression. Thus RETURN x+y JBOM fcnl ; the progranmner
should be sure tha t f c n l has a proper return address i n
it, since the compiler w i l l not check th i s . The operand
o f RETURN may be omitted.
(ffunction ca l l s) .
e closed i n the parentheses, separated by commas. Thus
f ' l x , y ~ , z) . i Note tha t the function may be specified by
az). expression; thus (a+b) (x,yfj,z) i s perfectly legal .
14 causes control t o be transferred t o the location which
i$ the value of the expression a+b with the specified
aatgwnents. Beware. The values of the first three f'unction
mguments are transmitted i n the A,B, and X reg is te rs
rdspectively. The addresses of the values of further
aztguments are put into NOP instructions which follow the
f u c t i o n crtll. The function i s called with a POP which
lqaves the l ink i n 0 and t ransfers t o the location
aadressed by it. Thus f (a ,yq , z) compiles LDA y;ADD*,
CAB; WDA a ; LDX z; CALL* f . See below for a discussion
of' function declarations. The function expects control
t a be returned t o the following location w i t h the value

For these and-aU

No
m e s h i f t operations

Vacated b i t s are replaced by zeros.

It may be convenient
DO f(x,y); GOTO t ransfers

RETURN evaluates i t s operand.

The arguments of the function are

Page 4

of the f'unction i n A.
I$ -c not the same as Fortran's.
a$ow example nothing the function does (within reason)
c4.n affect the value of a or z.
t$ansmit the address of a or z with the reference operator,
hdwever (see below).
(Sailing).
dOscussion of declarations below).
r$fers t o the specified f i e l d relative t o the address which
is the value of the first operand.
DgCLARE FIELD a(1), b(2); and i f x contains 143, then
x.a refers t o location 144, x.b t o 143, x.a.b t o 2 e h e
cdntents of location 144. A t a i l ed operand may appear
od e i ther side of an assignment operator.
djlscussion of PAGED declaration for the treatment of
paged blocks.
(binary, same precedence as .).
alpost equivalent to@T.F. I.e., it refers t o the b i t s
of T (not the word addressed by T) selected by F.
word displacement of F is ignored, and F must not
cr'oss a word boundary.
(reference and indirection).
takes an operand which must be an address (i . e . acceptable
OD the l e f t side of an assignment) and r e t w n s th i s address
a s i t s value. Note tha t t h i s implies tha t i t e ra t ion of the
reit'erence operator is i l l e g a l (i n fac t it does not m a k e
anp sense). The indirection operator $ evaluates i t s
o*rand and returns t h i s value as an address.

@$ is equivalent t o no operation, except tha t $ on an
address i s compiled w i t h the machine's indirect b i t ,
and w i l l therefore be affected by the presence of indirect
or index b i t s i n the contents of address. If we have
wriitten DECLARE FIELD s(0) ; then <@.s is equivalent
t o $<@, w i t h the exception voted above.
(subscripting). A single su' scr ip t i s allowed. As with
fupction ca l l s , %he object b ing subscripted may be an
a rb i t ra ry expression.
axpay, the compiler loads the subscript into X and compiles
an indirect reference through the array name. 1.e. it
e q e c t s the array name to contain the base address of
the array with the index b i t on.
the [] operator is equivalent t o $ +.
compiles

Note that t h i s cal l ing convention
In particular, i n the

It is possible t o

4 The . must be followed by a field name (see
The resul t ing object

Thus, i f we have

C f the

The construct T$F i s $

The -
The reference operator O $

The sequence

t

i 11
If it has been declared as an

For any other expression,
Thus (a,-b)[c OR d]+ l

LDA a; SUB b; STA t; LDA c; MRG d; ADD t; CAX; LDA 0,2; ADD-1;

Pr b a r ie s

i j

I '

c;

The grimaries for expressions may be numbers, names, o r

A number is a sfzing of digits, possibly followed by B or D,

character constants.

possibly followed by a single-digit scale factor.
number octal; i f it is absent, decimal is assumed. Thus
lOOD = ID2 = 144B = 1B244B = 100.

B makes the

A nane is a s t r ing of any number of l e t t e r s and d ig i t s
beginning with a l e t t e r . Only the first six characters of the

name are slignif icant.
A l l names except parameters and fields are treated in exactly
the sane m y when they occur i n expressions (except for subscrip-
t ing) .
descriptor which is the value of the name.

A name must be declared (see below).

E.g. a s t r ing name refers t o the pointer t o the s t r ing
Thus, if S i s a s t r ing

S c A + l

simply stolres A + l into S; t h i s is probably not reasonable.
Functions are provided t o convert between s t r ings and numbers.

There are about 80 reserved words (see Appendix B) which
may not be used as names.

A chatacter constant has the form '<three or fewer pseudo-
cha rac t e re ' , and may be used wherever a constant i s used. A

pseudo-character i s any character other than &, o r & followed
by one of the following:

1. Another & o r a '. The two are equivalent t o a
single & or ' i n the constant.

2. Three oc ta l d ig i t s . The number thus defined,
truncated t o 8 b i t s , counts as one character.

3. A l e t t e r . The ASCII (internal) code for the

letter + ZOOB is the value of the pseudo-character.
The characters are r ight- just i f ied i n the constant, which i s
f i l l e d out w i t h blanks (0) on the le f t .

have more than 3 pseudo-characters i n the constant.
It i s an error t o

A s t r ing constant has the form "<any number of pseudo-
charactera" . It is lega l only i n the context <string name c
<str ing constant>. A descriptor w i l l be created which points

Page 6

t o the constant s t r ing.
w i l l be alkocated for the descriptor.
w i l l alter the constant.

If the value of the name is 0, space
Writing in to the s t r ing

A var ie ty of operations are provided f o r converting field

1. A f i e l d name F appearing i n any context other than

names in to constants:

F (

$ F

. F

i a equivalent t o R constant whose value i s the word

displacement of the f i e ld .
The function PSHIFT(F) has 23-the rightmost b i t

position occupied by F as i t s value.
word boundaries. The value of FSHIFT is a constant.
THe function FMASK(F) has as value a constant which has

2.

F must not cross

3.
one b i t s i n positions selected by the f i e l d as i ts value.
It is equivalent t o (-l)$F.
boundaries .
F(expression) has the value of T after the statements
T 4 ; T$Fexpre ss ion
have been executed. F must not cross word boundaries.

F must not cross word

4.

Any e a r e s s i o n involving operators of precedence higher
than@and constant .operands w i l l be evaluated by the compiler,
yielding a r e su l t which behaves exactly l i ke a constant.

Dee l a r a t ions

Variables are declared w i t h DECLARE o r FUNCTION statements
or by appeaxing as labels .

DECLARE [F W D or PAGED] [INTEGER or STRING] [ARRAY] [EXTERNAL o r
ENTRY o r LOCAT(3]~<namelis.W.
be repeated as many times as desired.
ARRAY has been used it remains i n e f fec t fo r the remainder of
the current DECLARE statement. INTEGER i s assumed if it is
omitted, but once STRING has been used it remains i n e f f ec t
u n t i l INTEGER appears again.

The syntax of DECLARE is

9 The s tuf f a f t e r the DECLARE may

Once FmD, PAGED or

Each name i n the namelist may be

I ' t

c:::

preceded by $ (which makes it an entry) o r by * (which makes
it external, i.e. prevents storage from being assigned f o r i t) .
If ARRAY is present, a name may be followed by an expression
i n parentheses (or brackets). Thus

ARRAY At121, B[Xt2+14]
If FIXED i s absent, th i s construct makes the DECLARE an executable
statement; every time it is executed, the expression w i l l be

evaluated and tha t many c e l l s assigned fo r the array.
base address of the region assigned, with the index b i t set,
w i l l be stored i n the name.
name w i l l not be released automatically. The programmer must
release it explicit ly, if he wants to, with the FREE function.
"he system does not check t o see t h a t an array declaration i s
executed before the array i s referenced, or that the program
does not skore other things into the array name. If e i ther one
of these things happens, a mess w i l l probably resu l t unless the

programmer knows what he i s doing. If a name i s declared ARRAY
without,ang storage being assigned, the system will assme tha t

i t s value i s a pointer t o an array with the index b i t se t .
I.e., it w i l l compile

The

Any previous storage assigned t o the

LDX I; LM* A; STA B
for B + A [I ' J .

Example :
D&XARE INTEGER a,b, STRING d, $gl, g2, EXTERNAL g3, g4,
ARRAY e(x+y[4]), INTEGER c(l0); declares two scalar

integers, one integer array which will be assigned 10 locations
when the declaration is executed, two loca l scalar s t r ings

(d and g2), one loca l s t r ing array which w i l l be assigned
x+y[4] locc&tions when the declaration i s executed, one scalar

s t r ing which is an entry (gl), and two scalar s t r ings which are
assumed t o be defined elsewhere (g3 and g4).

If a name is declared with FIXED ARRAY, thus:
DECLARE FIXED ARRAY A[20], B[30];

this causes the number of words specified t o be allocated by the
compiler and the location addressed by the name t o be in i t ia l ized
t o the address of the block allocated w i t h the index b i t on. This

declaration i s equivalent t o
DECLARE ARRAY A[20], B[10];

except t h a t it i s not an executable statement but is done once

and for a l l by the compiler.
-

A nme on an array may be declared paged by put t ing the word

PAGED i n front of i ts declaration.
applies t o a l l the names declared following it i n the same s t a t e -

ment.
space will be allocated for it on the drum when the declaration
i s executed, and a.11 references t o it therea.fter w i l l be made t o
the drum.

it is subscripted i n the usual way:
(A+1) [I1 is equivalent t o A[I+11 , for example, a,s is the case

fo r core atrra,ys.

This a t t r ibu te , once mentioned,

If an array i s declared PAGED (not a FMM) array, of cowse), -

Correct access t a the array w i l l be obtained only i f

It i s not t rue tha t A[I]. -

I f a name declared paged i s not an array, the only
e f fec t is t h a t when it is ta i led the system w i l l assume it
contains a drum address.

obtained w i t h WK?3 (see below).

responsibi l i ty t o see tha t :

Such an address can only be correct ly
It i s the programer's

a .
b.

It does contain D drum address generated with NICE.

The f i e ld name used for t a i l i n g has a word displace-
ment less than the block size specified by the FMAKE.
Unpredictable errors w i l l occur i f t h i s ru le is not
observed.

c . No arithmetic i s done on the address. A construct
like (P+2) .X is not l ega l i f P is paged.
r e su l t i n P being t reated as though it were not

p8ged.

It w i l l -

Declaratiofis of f ie lds are not affected by PAGED.

($) should not be used on a PAGED pointer.

Indirection

When 8 name is declared t o be a s t r ing , a single storage
location i s reserved f o r it unless FLXED has been used.

are specified, however, by four-word s t r ing descriptors. The
address of such a descriptor must be put in to the s t r ing variable
before it i s used in any s t r ing operation. For non-FMED
str ings, t h i s i s usua.lly done w i t h the SETUP function, possibly
preceded by a MAKE:; a l ternat ively, the address of a descriptor
obtained i n some other way can be used.
i s not progerly in i t i a l i zed , the consequences of using it i n

any s t r ing operation are l i ke ly t o be serious.

Strings

If a s t r i n g variable

If a s t r ing declaration i s preceded by FIXED, the four-word
descriptor is assigned by the compiler and i t s address i s the
i n i t i a l value of the s t r ing.
a parenthesized expression,that many characters are allocated
for the s t r ing and the descriptor i s in i t ia l ized t o point t o
the area thus allocated. Example:

allocates sttring descriptors for 8 snd T; they must be set up to
point t o strings by SETUP. It also allocates 5 characters fo r U

and 240 for V and se t s up the descriptors properly.

If a FIXED STRING i s followed by

DECLARE F m D STRING S,T,U(5),V(240);

An integer may be in i t ia l ized by following i ts name w i t h

c constant or c name. Thus,
DECLARE A e 3, B c 14; C + A ;

makes 3 the i n i t i a l value of A, 14 the i n i t i a l value of B.
course, any expression which can be evaluated by the compiler
may be used as a constant. This i s not the same as a PARAMETER

declaration (see below).
recommended if the program changes the values of the variables,
since the program must then be reloaded in order t o be restarted.

O f

-
The use of this construct i s not

A FIXED ARRAY can be in i t ia l ized in the same way:
DECLARE FMED ARRAY A1101 c 1,3,5,7,11,13;

The first s ix elements of A are in i t ia l ized as indicated. The
remaining four elements are in i t ia l ized t o 0.

A s t r ing or a fixed s t r ing array may be in i t ia l ized i n the
same way, but the i n i t i a l values must be s t r ing constants.
Warning:
contents.

WPiting into in i t ia l ized s t r ings w i l l destroy the

If any declaration causes space t o be allocated at the point
i n the progpam where the declaration occurs, a branch over it i s

compiled.
i n the program.

Declarations may therefore be freely interpolated

Another form of DECLARE i s the following:
DECLARE FIELD name (constant[: constan onstant 1) which

defines a fkeld. Lots of f ie lds can be defined if desired. The
f i rs t constant specifies the word displacement of the field, the

Page 10

c:

other two the b i t positions i n the word.
on values between 0 and 47. A f i e ld may span two words, but it
may not be more than 24 b i t s long.

B i t positions can take

Thus:
DECLAhE FIELD a(0) ,b (l), c (2), c1(2:0,5), c2(2: 3,20) ,xyz (2:12,23) ;

defines s ix fields. The last three might be thought of as sub-
f i e lds of c, but they do not have t o be used i n this way.

p were a pointer t o a three-word data object, for example, then
p.xyz would refer t o the l a s t 12 bits of the t h i r d word of the

object.
f'unction or, of course, may be allocated by the programmer.

If

Such objects can be created from nowhere w i t h the MAKE

Names declared as FIELD are output t o DDT w i t h t he i r word
displacements as value.
they are t reated as constants equal t o the i r word displacements.
Thus, $(ptr+b) 5 $(ptr+l) s ptr.b.

If they appear not following a ".",

The declaration
D E C M PARAMETER clcl,c24',c3+3; makes the names cl,c2,

c3 equivalent i n - a l l ways t o the constants 1,2,3 fo r the rest
of the program.
Note again tha t any constant expression may be used where a constant

Any constant may appear on the r i g h t of the c.

i s required. P/\L? i r J j < 8 k d Y
The declaration

DECLARE INTEGER Q=R, S=T[3] i s lega l only i f R has

already been declared and T has already been declared as a
fixed array.
as R, S t o the same location as T[3] .

It causes Q t o be assigned t o the same location

A f'unstion is defined by
F"CT1ON name (arg l i s t) ;

Each argument i n the a r g l i s t can be preceded by INlEGER, STRING
o r ARRAY and is declared automatically.
otherwise 9;pecified.
be merged into the value supplied.
a function definit ion (th i s i s i l l e g a l i n any other context),
but only i f the redeclaration exactly matches any previous
declaration.
the f'unction name w i t h X.

STRING c) would compile STA a; CBA; MRG = 2B7; STA b; STX C;

INTEGER i s assumed unless
If ARRAY is specified, the index b i t will

A name can be redeclared i n

The system creates a return l ink by prefixing
The statement FUNCTION f (a , ARRAY b,

mx 0; STX X f ;

If additional arguments , IWEGEB 8, e were supplied, the code

The f’unctton name itself is also declared by t h i s statement.
A storage location is reserved for it, and the address of the

first wordl of the function (STA a above) is put in to t h i s address.
The l i n k may be specified explicit ly, i f desired, as

follows : FUNCTION F(Q,R), LINK W;
No expl ic i t provision Is made for recursive functions.

However, stnce the return l ink i s available, the programmer can
save and restore it himself.
complex expression, it i s not safe t o re-execute the expression
inside the function, since the expression may use temporary
locations which are not su.ved when the function i s called.
Beware.

LDA* 1,2 STA d; LDA* 2,2; STA e; would be added.

If a function ca.U appears i n a

-

A syrnbol is declared as a labe l by writing it at the
beginning of a statement followed by a colon.
exactly l ike a funct;ion name;
for it and in i t ia l ized t o the address of the first instruction
of the stattement.
assumed t o be an integer scalar. If we have A: ... ; GOT0 A;
th i s w i l l aompile :A BSS 0; . . . ; BRU* A; . . . ; A ZRO :A;

so that the right thing happens.

It is treated
a storage location i s reserved

Any statement can be labeled. A label is

These conventions for arrays, s t r ings and labels make it
very easy for them t o be transmitted as arguments.

Control Statements

The construction
IF expression DO;

7 EIiSEIF expression DO;

ELSE DO;

ENDIF;

repeat 0 or more times

\
optional 1

1

Page I 2

is legal with the obvious meaning.
balanced with respec$ to 3F and ENDIF may appear in place of the
dots. Of course, IF may be nested.
is strongly recommended.

Any sequence of statements

Proper use of indentation

The construction
FOR for clause DO;

HNDFOR ;

is also allowed.
with respect to FOR and ENDFOR which is symbolized by the dots
is executed repeatedly under control of the for clause, whose
syntax has three forms:

The arbitrary sequence of statements balanced

<hame> c- <expression, WHILE <expression>
which causes %he value of first expression to be assigned to the
name and the second expression tested each time around the loop.
When the test fails (value of the eqression=O) repetition stops.
The assignment and test are performed once before the loop is
executed ;

<name> t<expressiorO, <expression> WHILE <expression>
which is the same as the first form except that the first expression
is used for the first assignment, the second one thereafter;

<name> c <expression> [BY <expressiorG-) TO <expression>
with the obvious meaning.
of 1 is assumed.
than the TO expression, unless the latter is a negative constant,
in which case it continues until the name is less. A test is
performed before the loop is executed for the first time.
The special cases

If the BY is omitted, an increment
Repetition continues until the name is greater

I +<expression> BY 1 to N
I +-<expressiorD BY -1 to 0

are recognized and compiled more efficiently.

c..j
Miscellaneous "atements

Listing ma.y be controlled wi th the statements LIST and NOLIST.

Either may be followed by SOURCE, CODE or BINARY, and turns on or
off the specified form of output.

binary output on and off, since t h i s w i l l i n general r e su l t i n an
unloadable resu l t .

It is not a good idea t o turn

A program should be terminated by an END statement.

Special Fupnctions

The following special functions are a standard par t of the
language. They provide a l l the bui l t - in storage allocation, s t r ing

handling and input-output f a c i l i t i e s . If more elaborate f a c i l i t i e s
are required, recourse may be had t o machine-language routines. The

necessary linkages are described under kulction c a l l s and
declarations above.

1. Storage allocation functions
MAKE:(expression) creates a block of storage of the length

specified by the expression (but of a t l eas t two c e l l s) and returns

a pointer t o t h i s block as i t s value.
assigned by the system; the user should keep \is hands off t h i s ce l l ,
which is the one before the one pointed t o
function. An al ternate form is MAKE(expression, array name) which
assigns the block out of the specified array, which must have been
properly in i t ia l ized beforehand by a c a l l of SETARRAY(expression,
array name); i n t h i s case no prefix word is created.

the s ize specified i n the c a l l of SETARRAY can be assigned i n t h i s
way.

In fact , one extra c e l l is

,* Y
the vcLlue of the MAKE

Only blocks of

Blocks of any s ize can be assigned by a simple MAKF:.

To allocate space on the drum the function FIMAXE should be used.
It i s exactly l ike MAKE, except tha t the second argument, i f present,

should be a paged pointer t o an object near which the new space
should be assigned i f possible.

great ly improve the efficiency with which paged objects are accessed.
See the discussion of the PAGED declaration for further information
about the proper use of addresses obtained from PMAfaE.

Proper use of t h i s feature Will

To release a block of storage, do FREE(expression) (or
F'REE(expression, array name)), where the value of the expression
i s a pointer t o the block.
The storage allocator w i l l a.ttempt t o coalesce freed blocks, but

The function has no meaningful value.

Page 14

CI

since it cannot move blocks around, it i s possible t o fragment
storage hopelessly by acquiring and releasing blocks of many

d i f fe ren t sizes in an indiscriminate manner.
out of space, it w i l l complain and qui t .
acquires and immediately releases a block of four words.
exactly equivalent t o NOP (except for timing).
for drum space.

If the system runs
Note t h a t FREE(MAKE(4))

It i s
FREE also works

To copy one block of storage in to another one of equal size,

use BCOPY(expression,expression) . The first expression i s a
pointer t o the source, the second t o the destination. These
must be pointers acquired by MAKE (or careful ly fabricated)
since the length of the block i s determined from the contents of
the extra hidden word provided by MAKE.

have been created by a MAKE w i t h a single argument.
The source block must

2. Paging f a c i l i t i e s and functions

al locate and access a large (up t o 2l9 words) address space,
by buffering par t s of t h i s address space between core and drum
i n fixed-size pages.
amount of core space t o allocate for buffers (which can be

changed dyr)amically during execution), and the s ize of the
address space; individual pages may be locked in to core for a

time and later allowed t o be swapped out again; the user 's pa,ged

data may be divided in to a number of categories, which allows

more e f f i c i en t allocation of space by grouping objects of the
same category on the same page.

The paging f a c i l i t i e s provide a means for the user t o

The user can specify the page s ize , the

A t the time tha t INIT i s cal led (see the INITIALIZE
function i n section 6), cer ta in c e l l s i n the runtime are
examined t o determine the setup of the paging logic.
of these c e l l s are a l l pre-declared EXTERNAL.
contains the page s ize as a power of 2, which must be between

8 and 11. The c e l l NF'G contains the s ize of the desired address

"he names
The c e l l NPL

space as a, multiple of 2NpL: the s ize cannot exceed 2". If

Npc contaiqs a zero, it i s assumed tha t no use w i l l be made of

the paging logic, and any c a l l s on it w i l l produce e r ror comments.

D

The c e l l NET3 contains the number of core buffer6 t o be provided.

If it contains 0, a l l available space w i l l be used for buffer.
The c e l l NFC contains the highest category number which w i l l be

used.
access machinery, BRSs 124-127, is t o be used for storing paged
data, or a negative number if a -_ random f i l e called /$Qm>A!rA is

t o be used; the former is somewhat more eff ic ient , especially
i f the addiress space is large, but the l a t t e r can be accessed
by other programs via the ordinary f i l e machinery whereas the
former cannot.

A f e w other ce l l s are of interest . The c e l l E A T i s

The c e l l FM contains a positive number i f the d i rec t drum

examined wbenever a c a l l is made t o PMAKt3. I f it contains a
non-zero number, the new block will be allocated on a page

reserved for data of the designated category.
a zero, the new block w i l l be allocated on some convenient page
without reference t o category.
drum address as the second argument takes precedence over the
se t t ing of E A T .

If it contains

A c a l l of IMAKE with a valid

A page may be locked into core with LC€K(X), where X is a
drum address; the value is the corresponding core address, which
i s guaranteed t o remain valid u n t i l the page i s unlocked.
function USJLOCK(A), where A is a core address, stores the
corresponddng drum address i n a. c e l l called PADDR and returns the
old lock count (which i s incremented by LOCK and decremented if

non-zero by UNLOCK) as value; it is a l l r ight t o UNLOCK an
unlocked buffer.
buffers whdch are not locked a t the moment.

The

The c e l l "UP always contains the number of

Page buffers are allocated downwards (towards low-numbered
addresses) from the i n i t i a l se t t ing of a c e l l called ESTORG;

the bottom of the buffer area is put into the c e l l EARRAY by

the INIT operation. If the user wants t o reduce the amount
of space available for buffers, he may use B€"I!(X), where X

i s a core address i n a buffer. The buffer w i l l be returned t o
the pool of space available t o the core allocator (MAKE). The

converse e r a t i o n is BGET(X), which restores the buffer fo r
use by the paging logic. Note tha t the buffer area is defined

Page 16

at INIT time (as the NPB X cells jus t below (ESTORG) -2 NPL
and BPUT and BGET may only be used on addresses in t h i s range.
INIT allocates space up from BSTORG for tables for the drum
allocator, leaving the first unused c e l l in SARRAY. Thus SARRAY
and EARRAY bracket the core not used by the paging logic a f t e r
an INIT, while BSTORG and ESTORG bracket the core available t o
it before an INIT.

3. String handling functions

A st r ing is described by a four word descriptor which
specifies the beginning and end of the area assigned t o the
string, the reader pointer, and the writer pointer. The function
SETUP(string name, size) w i l l obtain a block of the specified
s ize and 8et up the descriptor pointed t o by the s t r ing name t o
point t o tha t block. If the name contains 0, a descriptor w i l l

a lso be created.
expression) w i l l make a descriptor which points t o the specified
number of characters s ta r t ing with the word pointed t o by the
expression.
t o create the descriptor); it is the programmer's responsibil i ty
t o ensure that the proper amount of space is i n f ac t available.

SETS(name, expression, expression).
the reader pointer, the second the writer pointer (which must be

greater; if it i s not, the reader pointer i s se t equal to the
writer pointer). Characters are numbered s ta r t ing a t 0. To set
the reader pointer only, use SETR(name, expression). TQ s e t the
writer pointer only, use SETW(name, expression).
length of a s t r ing (writer pointer - reader pointer) use
I;ENGTH(name).
meaningful value.

reader pointer, use GCI(name).
there w i l l be an error comment and a h a l t .

the alternate form GCI(name, expression) which evaluates the

specified expression on fa i lure ,
it need not be.
functions.
s t r i ng and decrement the writer pointer.
writes the character specified by the expression on the s t r ing

The alternate form SETUP(string name, size,

The storage allocator i s not invoked (except maybe

To set the reader and writer pointers of a string, use
The first expression specifies

To obtain the

None of these functions except U N G T H has a

To get the next character from a s t r ing and increment the
If there is no next character,

To avoid th i s , use

Often it w i l l be a GOTO, but
This convention i s also used for the next four

WCI(expression, name)
GCD(name) reads a character from the end of the

h

c:

specified by the name.
WCD(expression, nme) writes the character on the front of the
s t r ing, a t the location of the reader pointer, and fails for

the same reason. These functions have the character writ ten
as t h e i r value. APPEND(name, name) appends the second s t r ing
t o the first one, and fa i ls if there i s not room. It has no
meaningful, value. GC(name) yields the next character of the
s t r ing, but does not advance the reader pointer.
but yields junk i f the s t r ing i s empty.

moves the contents of b (presumably a pointer t o a descriptor)

in to a.

since s t r ing descriptors axe j u s t 4 word blocks:

To copy the s t r ing, use SCOPY(b,a).

as though SETS(a,O,O) had been executed.

convert a number N t o a s t r ing S, write CNS (N,S);

converts a signed number t o its decimal representation, producing

only enough d i g i t s t o accurately represent the number.

It f a i l s i f there i s no room.

It never fails,

The eccpression 841 (where a and b are s t r ing names) simply

To copy the descriptor, the BCOPY function can be used,

BCOPY(b,a).
a w i l l be in i t i a l i zed first

To cohvert a s t r ing S t o a number, write CSN(S). To

This

4. File-n8ming functions

A f i l e is opened for input with INFILE:(string name, expression);

the s t r i n g contains the full name of the f i l e .
requires the presence of an expression which is evaluated i n
case of fa t lure . Its value is the f i l e number. OUTFILF:(name,
expression[,expression]) does the same thing for output. The

second expression i s the option word which BRS 16 takes i n A.

It w i l l be assumed t o be 0 i f not supplied.

This function

Both of these

operations leave i n the location FTYPE the type word returned
by the BRS, i n case of fa i lure , the e r ror word returned by the
BRS i s i n location ERROR.

To acquire f i l e names, use I"AW(name, expression) and

OlJTNAME(name, expression), both of which col lect the name from
the teletype and write it on the end of the s t r ing supplied.

C'

Page 18

Both evaluate the expression in the event of failure, and have
the terminating character as value.

To close a f i le , do CLOSE(expression); the expression's
value should be the f i l e number.
CLOSALL ().

To close a l l f i l e s , do

5 . Input-output functions

To read a character, use CIN(expression); the value of the

expression should be the f i l e number. This function simply
does a C I O . Its value is the character read.
use COUT(expression[,expression]); f i l e 1 i s assumed if not
specified. This function has the character written a s argument.
To read and write a-a%&ng, use WIN and WOW i n exactly the same
way. To write a string, use SOUT(namec,file]). To write carriage
returns, use CRZP(expression[, f i l e]) ; the expression specifies
how many should be written.

To write a character,

7
I* #; + C ' C I <

To read a number, use IIN(file[,radixl) . Decimal radix
i s assumed. To write a number, use IOW(expression). Extra
arguments, i n order, are the f i l e (1 assumed), the radix
(10 assumed) and the number of characters t o be written (-1 or
f ree format assumed). Chrcracters are discarded from the l e f t ;
the number is f i l l ed out on the l e f t w i t h blanks.
supplied i f the number i s negative.

A sign i s

6. Miscellaneous functions

There are three argumentless special functions of general
in te res t . INITIALIZE() i n i t i a l i ze s the QSPL storage allocator,
taking a l l the space between the contents of BSTORG and the
end of core for i tself .
BSTORG t o point lOOB c e l l s beyond the end of the program.

you want some space for patches or whatever it is a l l r ight
t o increase it.

The GO command automatically se t s up
If

Since the GO command does not c a l l INITIALIZE, the compiler
provides an INITIALIZE as the first instruction of the user 's

Page 20

c.)
<LOAD name, name,...,name.
loads the specified f i les with DDT a f t e r ins ta l l ing the QSm

runtime first. The f i les should be ordinary lega l DDT binaries;
they need not have been produced by QSPL.
has been loaded, the remainder of core i s automatically assigned
t o the invisible storage allocator array called SARRAY.
should not be used by the programmer.
can be loaded by an independent DDT i f desired.

no runtime features they w i l l run without diff icul ty .
the runtime can be supplied manually. Appendix A explains how t o
do this. Note that runtime features are invoked by every bui l t -
i n function except CIN, COW, WIN, WOW, CLOSE and CLOSALL, by
the use of s t r ings for arithmetic, and by array declarations.
Except for these features, only the c a l l pop need be supplied.
It i s the first one; a BRU* 0 i n location 100 w i l l suffice.

When the last f i l e

It
Note that QSPL binaries

If they use
Alternatively,

<Go
t ransfers control t o DDT.

do not foqget t o do INIT; U before running it.
If the program does not c a l l INITIALIZE,

-- --
a D I T f i l e name
t ransfers control t o QJD after reading i n the specified f i l e .

Thus, an edit, compile and load sequence can be achieved
without ever leaving the shelter of the &SF% command language.

The compiler contains a number of in te rna l tables whose
overflow is not checked for . These tables have been allocated
rather generously, but could be overwhelmed by an excessively
grandiose statement. To avoid such a disaster, it would be
wise t o l i m i t the length of statements t o 2 or 3 l ines.

Page 21

APPENDIX A

Runtime Details

A t the end of t h i s appendix is a complete list of the
runtime pops: opcodes, mnemonics, and cal l ing sequences. The

body of the appendix is devoted t o a description of QSm

conventions for strings, core allocation, and drum allocation.
Hate tha t programs which do not use:

s t r ings
any special functions other than CIN, COW, WIN, WOW,

declarations of non-fixed arrays or PAGED quan$ities
CLOSE, CLOSALL

can run without any of the runtime except the CALL pop, which
is opcode 100.
care of it.

Putting BRU* 0 into location 100 w i l l take

To load the QSPL runtime w i t h an independent DDT, rather

than with the LOAD command in QSPL, simply load the f i l e ()WUN
with ;T l ike any other binary f i l e . Before running the program,
put into the c e l l SARRAY (declared external i n the runtime) 1-k

the address of the first available c e l l of core, into ESTORG

the l a s t ava ibb le c e l l of core.
the Q,Sm allocator w i l l take over a l l of core between (SARRAY)
and (ESTORG).
function, be sure t o do INIT;U before s ta r t ing it up i f you
make any use of the storage allocator.

When the 7NIT pop is executed,

If the program does not c a l l the MITIALTZE

Strings

A QWL s t r ing descriptor consists of four words, each of
which is a character pointer (3* word address + 0, 1 o r 2).

They are:
p i n t e r t o character before first character of space

allocated t o s t r ing.
reader pointer for s t r ing.
writer pointer for string.
pointer t o last character of space allocated t o s t r ing.

I
-- I

Page 22

c
ISII creates such a descriptor. RSD, RSR and RSW set reader and
writer pointers. Characters are counted from 0. RCS reads the

characters between reader and writer pointer, WCS writes
characters between writer and end pointers.
between writer and reader pointers.
between reader and beginning pointers.
STRING must contain the address of a descriptor when it is used
i n a s t r ing operation.

RCB reads characters
WCB writes characters

A variable declared

Paging Logic

A valid drum address has b i t 3 off and b i t 4 on; b i t s 0-2

are ignored and b i t s 5-23 comprise the actual v i r tua l address.

CFA and CEI are used t o t ranslate such addresses into core
addresses; if the desired page is not i n core, it i s read i n
(which usually involves writing out some other page).
and CEIS do the same, except that they also se t a f l ag associated
with the buffer t o ensure tha t the page w i l l be rewritten on the
drum before a new one i s brought into the buffer.

CFAS

Core Storage Allocation

A block allocated by a (non-fixed) array declaration or by
a single-argument c a l l of MAKE contains one more word than w a s
requested by the user.
preceding the zeroth word of the block, contains the t o t a l length
of the block, including the extra word.

used by the storage aUocator:

.

The extra word, which i s the one immediately

-
The top two b i t s are

b i t 0 is on i f the block i s free.
b i t 1 is on i f the next lower block i s free.

Blocks allocated by a FXED ARRAY declaration or a two-argument
c a l l of MAKE do not have t h i s extra word. -

An array being used for storage allocation (i .e . one set
up by SETARRAY, o r the SARRAY array) has the following form:

Word - Contents

-1 Length + f l ag b i t s . See above.
0 Bead size, o r 0 for an array which al locates

variable sized beads (or blocks).
1 Address of routine t o c a l l when free space

is exhausted. This word may be set by
the programmer. The system does a CALL*

through it.
2 Pointer t o master f ree L i s t (or j u s t t o

free l i s t fo r arrays allocating fixed

sized blocks).

i

3 Free space t o be allocated.

The free l i s t for a fixed block s ize array starts a t the

second word of the array, is linked through the first word of
each free block, and terminates w i t h a zero.

The master free l is t for a variable block s ize array uses
one block for each block size. Three words of t h i s block are

Used.

-1 Length + f l ag bi ts .

0 Back-pointer. Terminates a t 0th word of array.
1 Pointer t o slave-free l is t for t h i s block s ize .
2 Pointer t o next block on master fkee l is t .

The blocks on a slave-free list are a l l of the same size.
Two words of each are used.

-1 Length + f lag bi ts .

0 Back pointer on slave-free l is t .
1 Forward pointer on slave-free list, or 0.

The last entry on the master free l is t may be for block
s ize 2.
is not needed, since the master f ree list is sorted by decreasing
block size, and the smallest possible block s ize i s 2.

In th i s case the th i rd word is not available, but it

The s i tuat ion i s i l l u s t r a t ed i n Figure 1.

I
i '

Page 24

Main Array 10-Word Beads &Word Beads 2-Word Beads

c.;

Figure 1: Pointer structure for an array al locat ing
vaxiable s ize blocks. The top row i s the

master f ree l ist , the.czo;lumns slave f ree lists.

Jk on mnemonic means thqt a l l central regis ters not used t o return resu l t s
u are destroyed.

+ on mnemonic means tha t all central regis ters are cleared.

Code

100

-

101

102

103

104

105

106

107

ll0

111

Mnemonic

CALL

*NSC

I

+pG
I

*FII

1 *SGO

I

JkAOF

*OD?

*OOF

Fwnct ion

Function cal l . The definit ion i s ju s t B R W 0. Thus
F(A,B) complies LDA A; LDB B; CALL* F

Numeric t o s t r ing conversion. (A) = o r i i n a l integer,
.(Q) = st r ing description address, CNS(A,S
LDA A; NSC S

Pr in t s t r ing s tar t ing at Q on teletype with BRS 34.
Not output by compiler

Output integer t o f i l e . (Q) -= f i l e number, (A) =
signed integer, (B) = radix, (X) = number of
characters t o output (-1 means free format)
IOUT(A,F,R,G) compiles IDA A; LDB R; Wm G; FLO F

Integer input t o A, terminating character t o B.
(Q) = file-number,-(A) = radix,
LDB R; F I I F; STA A.

Ac- IIN(F,R,) compiles

String output.
(A) = f i l e number.

(Q) = s t r ing descriptor address,
SOUT(S,F) compiles UIA F; SGO S

Accept input f i l e name.
address. The f i l e name is written on the end o f t h e
string.
i f name not recognized.
A I F S; BFKJ* F; STA T

(Q) = string descriptor

Tc- X"AkE(S,GOTO i?l) compiles
Return terminating character t o A. No skip

Accept output f i l e name.
T+- OUTNM(S,GOTO F) compiles AOF S;
BRUJk F; STA T

See AD.

Open input f i l e .
The s t r ing should contain the name. Return f i l e
number t o A, type t o c e l l FTYPE.
cannot be opened, error code t o c e l l ERROR
N+INFILE(S, GOT0 F) compiles OTF S; BUR* F;
STA N.

(Q) = s t r ing descriptor address.

No skip if f i l e

Open output f i l e .
word for BRS 16 (See R-21).
N6OlJTFILE(S ,GOTO F, Z) compiles LDA Z; OOF S;
BRUJk F; STAN.

See O I F , and (A) = option

c

Page 26

112

313

WFY

*SNC

114 RERR

115 *RCN

116

120

12s

122

*RCS

w c s

*RCB

*WCB

+ISD

+RSD

(Q) = destination bead address
addxess.
inclusive into words from (Q) t o (Q)+((A)-1)-1.
COPY(A,B) compiles LDA A; CPY B

String t o numeric conversion.
descriptor address. Converts the (possibly signed)
decimal number on the front of the s t r ing t o binary
and leaves it i n A. The s t r ing descriptor points
t o the first character after the number. A CSN(S)
SNC S; STA A.

(A) = source bead
Copies words from (A) t o (A)+((A) - 1) - 1

(Q) = st r ing

Runtime error.

Read character, no motion.
address.
addressed by the descriptor t o A.
not changed.

Q (n& (a)) i s the error number.

(Q) = st r ing descriptor
Reads the character following the one

The descriptor is
GC(S) compiles RCN S

Read character from string.
address. Reads the character following the one
addressed by the descriptor into A, increments the
descriptor t o paint t o the character. Skip i f
s t r ing i s not empty.

(Q) = st r ing descriptor

GCI(S,GCTO F) compiles RCS S; BRU* F

Write character from string.
character from A. Skip if space lef't i n string.
WCI(C,S,GOTO F) compiles LDA C; WCS S; BRU* F

See RCS, but writes

Read character backwards.
character which would have been written by the last
WCS. GCD(S,GOTO F) compiles RCB S; BRU* F.

See RCS, but reads the

Write character backwards. See RCS but writes (A)
in to the s t r ing so tha t it w i l l be read by a following
RCS. WCP(C,S,GOTO F) compiles LDA C; WCB S; BRU* F

In i t i a l i ze s t r ing descriptor. (Q) = 0 (in which case
allocate a four word block) or s t r ing descriptor
address, (A) = address or 0 (i n which case (B)+2/3
words w i l l be allocated automtical ly) , (B) = number
of characters.
addressed by (Q) (allocating the necessary 4-ward
block and putting i ts address i n t o Q i f necessar)
pointing t o a(B) character s t r ing s tar t ing at (A .y .
SETUP(S,Z,W) compiles LDA W; LDB Z; ISD S

Reset str i descriptor. (Q) = st r ing descriptor
address, (A 7 = character number t o se t read pointer
t o (B) = character number t o se t write pointer
t o , SETS(S,R,W) compiles LDA R; LDB W; RSD S

Sets up s t r ing descriptor at location

124
'v

125

126

127

1 3 1

132

133

134

137

*LNG

+CPS

*AFB

+RFB

+IFB

+TNIT

*AD

+RVB

CRXF

+RSR

+RSW

ESC

Length of string.
Number of Characters between read and write pointers
(i .e . number of RCS operations which can be done
without a no skip return) returned i n A.
T C LENGTH(S) complies LtNG S; STA T

(Q) = s t r ing descriptor address.

Copy s t r ing.
t ination, (x) for source.
destruction string.
room. Source s t r ing i s not altered. Ap"D
(A,B,GOTO F)

(Q) = st r ing descriptor address for des-
Copies source s t r ing t o

Skip return i f there is enough

compiles LDX A; CPS S; BRU* F

Allocate fixed block.
block size.
array, which must previously have been in i t i a l i zed
by fo r blocks of t h i s s ize . Error if the
block s ize is wrong. Returns address of block i n A.
TeMAKE(S,A) compiles LDA S; AJ?B A; STA T

Release fixed block.
block address. Inverts AFB. FREE(T,A) compiles
LDAT; RF'BA

(Q) -- address of array, (A)=
Allocates a block of s ize (A) from the

(Q) = address of array, (A)=

1nitXl.ize fixed <array.
(A) = block size.
(lenght must be i n (Q)-1) so tha t A373 and RFB
can allocate and f ree blocks of the specified s ize .
SETARRAY(S,A) compiles LDA S; IFB A.

(Q) = address of array,
Sets up the specified array

In i t i a l i ze runtime .
Allocate variable block.
(A) = block size.
s ize from the array, &ich must be se t up properly.
INIT se t s up SARRAX, which i s the only array the
compiler w i l l address wi th the pop.
T + m (S) compiles LDA S; AVB SAR;RAy; STA T

(Q) = ad&ess of array,
Allocates a block of specified

Release variable block. Same as RFB fo r SARRAY.
Inverts AVB. FREE(T) compiles LDA T; FNB SARRAY.

Generate (A) carriage returns and l i ne feeds on
f i l e (Q).
CRIJ?(N,F) compiles LDA N; CRW F

Clears A and B but preserves X .

Reset s t r ing read pointer.
pointer only. SETR(S,R) compiles LDA R; RSR S

Reset s t r ing write pointer.
pointer. SETW(S,W) compiles LDA W; RSW S

Same as RSD for read

Same as RSR fo r write

Establish s t r ing constant. (Q) as for ISD. The
word a f t e r the ESC contains a character count, the

c,

140

141

142

1.44

CEA

CEI

CEAS

CEIS

*APB

following words the characters packed 3/word. me
str ing descriptor is se t t o point t o t h i s string
and control returns t o the word following the last
word of the string.
S <- "ABCD" compiles ESC S; DATA 4; ASC 2, ABCD.

Compute effective address for paged object.
drum address.
X. A preserved, B destroyed. The v a i d i t y of the
core address is guaranteed only u n t i l the next
paged storage pop.
modified.

(&)=
Core address of object returned i n

Use CEAS if object is t o be
A +P,X compiles CEA P; LDA X$; STA A.

Compute effective address, indexed. Same as CEA
except tha t (X) is added t o (Q) t o get dmun
address, Use CEIS if object is t o be modified.
A+P[I] compile LDX I; CEI P; LDA 0,2: STA A

Compute effective address for above.
CEA, but for storing into object.
LDA A;CEAS P; STA X , 2

Same as
P.XcA compiles

Compute effective address, indexed for store.
Same as CEI, but for storing into array.
P[I]+A compile LDA A; UXX J; CEIS P; STA 0,2.

Allocate paged block. (Q)=dy.wn address near which
block w i l l be assigned if possible, (A) =block size.
Address of block returned t o A. If the block s ize
is less than the page size-?, the block w i l l lie
ent i re ly on one page; hence, the core address can
be used direct ly as a base address t o access all
the words of the block.
CEA or CElC bs required for each reference.
PMIWE(N,X) compiles LDA N; AJJB X; STA A

Otherwise, a separate
A

Miscellaneous r u n t b e functions. The effective
address Q (not - (Q)) determines the f'unction.
following values of Q are currently i n use:

1 (LOCK) (A)--dmun address. The page on which

The

t h i s address l i e s i s brought in to core
i f not already there, and a lock count
on %he page buffer is incremented, pre-
venting the page from leaving core.
The core address is retruned i n A.
X b L O C K (Y) compiles LDA Y ; MRF I; STA X

146

2 (UNUX!K) (A) =core address. The lock count
on the buffer is decremented; the
corresponding drum address is stared
in PADDR and the old value o f the
lock count is returned in A.
XEUNLOCK(Y) compiles LDA Y; MRF 2; STA X

is returned for use by the in-core
storage allocator. All regis ters are
cleared.

-

3 (BHfi) (A) =core address. The page buffer

BHIT(X) compiles LDA X; MRF 3

4 (BGET) (A) = core address. The page buffer
i s taken back f'rom the in-core storage
allocator for use by the paging 1 ic.
A l l regis ters are cleared. BGT(3
compiles LDA X; MRF 4

This is exactly the same as the BRS SYSPOP, but
also stores the f i n a l contents of the central
regis ters i n ce l l s S E A , SYSB, and SYSX.
BRS(12,1,,-1) compiles LDA =1; LM[=-1; QERS l.2.

This i s exactly the same as the SBRM SYSPOP,
but also stores the f i n a l contents of the
central regis ters i n ce l l s SYSA, SYSB, and
SYSX. A b - SBRM(F,X) compiles LDA X; WBIIM F;
STA A

t

APPENDIX B

Reserved Words.

-.

AND
APPEND
ARRAY
BCOPY
BGET
BINARY
BHlT
BRS
BY
CIN
CLOSE
C U > s r n
CODE
corn
CNS
ClUJ?
CSN
DECLARE
DO
ELSE
EM)
ENTRY
EOR
EXIT
MrnRNAL
FIELD
F m D
FOR
FxEz
FROM
FUNCTION

c1

GC
GCD
GCI
GOT0
HALT
IDENT
IF
IIN
mm
INITmIZE
INNM
INTEGm
IOUT
I C Y
3iENGTH
LINK
LIST
LOCAL
LOCK
LSH
MAKE
MOD
NOLIST
NCrr
OR
OUTFm

_ I - \ I

P-
FMAm
RCY
IiEm
RSH
SBRM
SCOPY
SETARRAY
SEflR
SETS
SETUP
SETW
SOURCE
SOUT
STRINZ;
THROUGH
THRU
TO
UNLOCK
WCD
WCI
WHJm.3
WHILF:
WIN
WOUT

”

c1;

BSTORG

EARRAY

ERROR
ESTORG

FTm
NPB

m
NFG

NPlC

NUP
N D R

PCAT

FM

SARRAY

SYSA

SYSB
SYSX

Standard External Syabola

F i r s t word of storage available t o INIT.
Wst word not used for page buffers or table6
after IIPIT.
Error codes left here by INFILE and OUTFXIZ.
Last word of storage available t o INIT.
File type left here by INFm and OUTFILE.
Number of core buffers for paging.
available space *
Number of categories for gaging.

0 = a l l

I)esired19~oIL drum address apace/2 Nm, ,
m c 2 - -
Page size as power of 2.

Number of unlocke4 pages.
Drum address of unlocked page.
Category to be used by PMAKE.
> 0 10 paging logic u8es NRH, < 0 if it wes
&e random f i l e /$&pnATA
Address of second word not used for page buffer8
or t abbs a f t e r IlQIT.

Saved A register after I3RS or SBRM.
Saved B register
Saved X register

8 c lQpL < 11.
-r -

0 = don't care.

